

ChE 132

Stagewise Operations

Course Description: Unified treatment of stagewise operations. Numerical & graphical solution techniques. Design of multistage equipment

Course Prerequisites: ChE 123 and ChE 106

Course Credit: 3.0 units (3 h lecture)

Program Educational Objectives (BS Chemical Engineering)

The program aims to educate students such that three to five years from graduation, they:

- 1. take leadership roles in their respective fields and/or effectively work in or manage a team;
- 2. are equipped with the extensive knowledge and relevant skills necessary to succeed in their chosen careers and to become responsive citizens;
- 3. are able to demonstrate strong research & innovative capability as they recognize and address opportunities and challenges in their respective spheres of influence;
- 4. have shown strong commitment to the ethical practice of their profession; to health, safety and environment; and service to society.

Course Outcomes

At the end of the course, the student should be able to:

- 1. Define an equilibrium stage, explain general separation techniques and how mass and energy balances and phase equilibria play an important role in these processes.
- 2. Create equilibrium phase diagrams for solid-liquid equilibrium (SLE), liquid-liquid equilibrium (LLE) and vapor-liquid equilibrium (VLE) systems from experimental data & thermodynamic models.
- 3. Calculate the resulting amounts & compositions of exit streams from single, cascading & refluxed equilibrium stage configurations using graphical and numerical methods.
- 4. Understand the concepts and reasoning behind graphical solutions in stagewise operations for the different phase systems.
- 5. Program solutions for stagewise operations for the different phase systems.
- 6. Cite various examples of separation processes in industry and explain the theory behind these systems.

Student Outcomes Satisfied by Course Outcomes

- [a] Ability to apply knowledge of mathematics and science to solve engineering problems
- [c] Ability to design a system, component, or process to meet desired needs within realistic constraints such as economic, environmental, social, political, ethical, health and safety, manufacturability, and sustainability, in accordance with standards
- [e] Ability to identify, formulate, and solve engineering problems

Course Content

- 1. Introduction to separation processes
- 2. Thermodynamics of stagewise operations
- 3. Single equilibrium stages
 - Leaching
 - Liquid-liquid extraction
 - Gas absorption
 - Gas adsorption
 - Flash distillation

First Exam

- 4. Multistage batch separations
- 5. Cascade systems
- 6. Multistage separation processes
 - Leaching
 - Gas absorption
 - Gas adsorption
 - Liquid-liquid extraction
- 7. Countercurrent multistage separation with reflux

Second Exam

- 8. Distillation of binary mixtures
- 9. Ponchon-Savarit method
- 10. Distillation with reflux
- 11. Simplified methods
- 12. Batch distillation
- 13. Enhanced distillation methods

Third Exam

Course Assessment

Long Examinations (4) 50% Class Work 30% Finals 20%

Course Policies

- 1. Each student is required to always be prepared with an ink pen, a pencil, a long ruler and a scientific calculator. Any student who fails to bring any one of these items during classwork day will be requested to leave the lecture room.
- 2. As soon as the results of a long exam or classwork is returned, a student shall be given only up to two (2) days, immediately following the release, to seek corrections and/or partial credit for the exam paper.
- 3. A student who misses an exam must submit an official excuse slip from the Administrative Staff Office to the instructor on or before the schedule of the next long exam. A student may miss only one long exam; any other missed long exam, whether with or without valid excuse, shall be given a score of zero.
- 4. University rules on student conduct shall be observed.
- 5. The instructor reserves the right to modify the policies and class schedule without prior notice.

Grading System

1.00	1.25	1.50	1.75	2.00	2.25	2.5	2.75	3.00	5.00
[92,100]	[88,92)	[84,88)	[80,84)	[76,80)	[72,76)	[68,72)	[64,68)	[60,64)	[0,60)

List of Instructors

Dr. Jose Muñoz

Dr. Terence Tumolva

Prof. Jonas Karl Christopher Agutaya

Engr. Louie Arelvi Villanueva

References

- 1. Foust, et al., Principles of Unit Operations, 2nd Ed.
- 2. J.D. Seader and E. Henley, Separation Process Principles, 3rd Ed.
- 3. McCabe, Smith and Harriot, *Unit Operations of Chemical Engineering*, 7th Ed.
- 4. Perry, Robert and Don Green, Perry's Chemical Engineering Handbook, 7th Ed.